Thermal diffusivity of SiO₂ and Y₂O₃ added AIN ceramics

TAKESHI YAGI, KAZUO SHINOZAKI, NOBUYASU MIZUTANI, MASANORI KATO Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, O-Okayama, Meguro-ku, Tokyo 152, Japan

AKIHIKO TSUGE Research and Development Center, Toshiba Corporation, Komukai, Saiwai-ku, Kawasaki-shi, Kanagawa 210, Japan

The addition of both SiO₂ and Y₂O₃ to AIN led to decrease of 27R polytype in specimens sintered above 1600° C and also to an increase of thermal diffusivity of AIN ceramics. Furthermore, SiO₂ and Y₂O₃ added AIN ceramics were fully densified by liquid–phase sintering, and resulted in higher thermal diffusivity. The formation temperature of the liquid phase was lowered more by the addition of both SiO₂ and Y₂O₃ to AIN ceramics.

1. Introduction

It is difficult to obtain fully densified AIN ceramics by pressureless sintering [1, 2]. Additives for densification of AIN ceramics have been investigated [3, 4]. The effect of thirty kinds of additives on pressureless sintering of AIN was examined systematically by Komeya *et al.* [5], who suggested that alkali earth and rare earth oxides had a great effect on the densification of AIN ceramics.

The thermal conductivity of AlN has been investigated. AlN essentially has high thermal conductivity ($320 \text{ Wm}^{-1} \text{ K}^{-1}$ is expected for a single crystal [6]), but it is known that impurities, oxygen in particular, are responsible for the decrease of thermal conductivity [7–9]. Recently, it was found that some additives (e.g. Y₂O₃, CaO and Ca(NO₃)₂), which densified AlN to nearly theoretical density, were very effective for the increase of thermal conductivity of AlN ceramics [9, 10].

In our previous work [11], the thermal diffusivity of AlN ceramics decreased significantly by addition of SiO_2 . The AlN ceramics with 4 wt % SiO_2 could not be densified by pressureless sintering in the temperature range from 1400 to 1800° C, because of the absence of a liquid phase. The thermal diffusivity of these samples was very low, because of their porous structure. The AlN ceramics containing 2, 4 and 8 wt % SiO₂ were densified by hot-pressing, but also had low thermal diffusivity. In these samples, the grains of 27R polytype formed by the reaction between AlN and SiO₂ were dispersed and obstructed the conduction of heat.

In this study, the sinterability and the thermal diffusivity of AlN ceramics with both SiO_2 and Y_2O_3 added were investigated.

2. Experiment

2.1. Simultaneous addition of SiO_2 and Y_2O_3 3 wt % SiO_2 (Wako-Junyaku Co Ltd) and 8 wt %

 Y_2O_3 (Shin'etsukagaku Ltd) were added to the AlN powder (Toshiba Corporation Research and Development Center), which was prepared by reduction process of Al₂O₃, and mixed in butyl alcohol. After drying, the mixture was formed into pellets by isostatic-pressing at 1000 kg cm⁻². The compact bodies were sintered in an AlN crucible at 1400, 1500, 1600, 1700 and 1800° C for 2 h in 1 atm of nitrogen.

2.2. Two-step addition of SiO_2 and Y_2O_3

In the first step, SiO_2 was added to AlN powder. The mixture was compacted and sintered at 1800° C for 2 h in 1 atm of nitrogen. In the second step, sintered AlN bodies with SiO_2 were ground in an agate mortar, and then Y_2O_3 was added to this ground AlN powder. The mixture was compacted and sintered again at 1400, 1600, 1700 and 1800° C for 2 h in 1 atm of nitrogen. The composition of final products was 3 wt % SiO₂ and 8 wt % Y_2O_3 as same as in experiment 2.1.

Thermal diffusivity was measured by a laser-flash method using a ruby laser ($\lambda = 0.6943 \,\mu\text{m}$) and the liquid nitrogen-cooled InSb infrared detector (TC-3000-NCA, Shinkuriko Co., Ltd) at room temperature. The specimen discs were $\approx 10 \,\text{mm}$ in diameter and 3 mm thick.

The powder X-ray diffraction data were obtained by a diffractometer (Philips PW1700, Nippon Philips Corporation) using graphite-monochromated $CuK\alpha$ radiation.

Microstructural analysis was carried out using an analytical electron microscope (AEM: JEOL 200CX, JEOL Ltd with EDAX PV9100, Nippon Philips Corporation) and a scanning electron microscope (SEM: JEOL T-200, JEOL Ltd). Samples for AEM were sliced from the sintered bodies by a diamond cutter, thinned by hand to $\approx 20 \,\mu$ m thick and finally by an ion beam milling machine (Edwards IBT-200, Nissan-Edwards Co., Ltd).

Figure 1 The effect of sintering temperature on the density of AlN ceramics for various additives. The dotted line indicates the theoretical density of AlN $(3.26 \,\mathrm{g}\,\mathrm{cm}^{-3})$ (\odot SiO₂ + Y₂O₃, \triangle Y₂O₃, \Box SiO₂).

The density of the sintered body was calculated using diameter, thickness and weight of specimens.

3. Result and discussion

3.1. Simultaneous addition of SiO_2 and Y_2O_3 3.1.1. Densification

Figure 1 shows the change of density with sintering temperature for AIN ceramics with 3 wt % SiO₂ and $8 \text{ wt } \% \text{ Y}_2\text{O}_3$. The results for AlN ceramics with 7 wt % Y_2O_3 and with 4 wt % SiO₂ [11] are also plotted for reference. The density of AlN ceramics with SiO₂ and Y2O3 increased with sintering temperature, and finally this sample was fully densified at 1800°C. Particularly, in the temperature range from 1500 to 1700° C, the increase in density was large. Similarly, for AlN ceramics containing Y₂O₃, the density increased rapidly in the temperature range from 1600 to 1700° C and then reached the theoretical value. The addition of alkali earth and rare earth oxides gave fully densified AlN by sintering with liquid phase aluminate in the system of AlN-alkali earth oxides or rare earth oxides [5, 10]. The effect of Y_2O_3 in this work agreed with previous results [5, 10]. In addition, the result of AIN ceramics with SiO_2 and Y_2O_3 suggested that even in the case of coexistence of SiO₂, Y₂O₃ was effective on the densification of AlN. The following microstructure observation shows that the sintering with liquid phase also occurred in AIN ceramics containing SiO₂ and Y₂O₃ in the temperature range from 1500 to 1800° C. In this temperature range, the rapid densification occurred as shown in Fig. 1.

Furthermore, the comparison of densification curves of AlN ceramics containing only Y_2O_3 and containing both SiO₂ and Y_2O_3 suggested that the temperature at which densification started, i.e. liquid phase began to form, in AlN ceramics with both SiO₂ and Y_2O_3 was lower than that for AlN ceramics with Y_2O_3 . Thus, there may be the possibility of sintering at lower temperature by addition of the Y_2O_3 and SiO₂.

3.1.2. Identification of phases

Figure 2 shows the powder X-ray diffraction patterns of AlN ceramics containing 3 wt % SiO₂ and 8 wt %Y₂O₃ sintered at various temperatures. The specimen sintered at 1400°C consisted of AlN and Y₄Al₂O₉ as

Figure 2 The powder X-ray diffraction patterns of SiO₂ and Y₂O₃ added AlN ceramics sintered at various temperatures (\bigcirc AlN, \bigcirc 27R, \lor Al₂O₃, \Box Y₄Al₂O₉, \blacksquare Y₃Al₅O₁₂).

major phases, 27R polytype of AlN [12] as minor and trace of α -Al₂O₃. α -Al₂O₃, present in the surface layer of AlN particles of the starting powder [8], did not exist in the specimens sintered above 1600° C. This might be due to the formation of compounds in the system of Al₂O₃-Y₂O₃ and/or the the diffusion of oxygen from Al₂O₃ layer into AlN grain. Y₄Al₂O₉ and Y₃Al₅O₁₂ were formed by the reaction of Al₂O₃ and Y₂O₃ as mentioned above. At lower sintering temperature (1400° C), Y₄Al₂O₉ was formed in the specimen, then Y₃Al₅O₁₂ appeared. However Y₄Al₂O₉ decreased above 1500° C and finally disappeared above 1700° C.

The 27R polytype of AlN, which already existed in the specimen sintered at 1400°C, decreased with increasing sintering temperature. As reported in the previous paper [11], in the case of the pressureless sintered AlN ceramics with SiO₂, 27R polytype was present in all specimens sintered in the temperature range from 1400 to 1800°C. However, in AlN ceramics containing both SiO₂ and Y₂O₃, the 27R polytype was not detected in the specimen sintered at 1700 and 1800°C.

3.1.3 Microstructure

Figure 3 shows the scanning electron micrographs of fracture surfaces of AlN ceramics containing SiO_2 and Y_2O_3 sintered at various temperatures.

The grains in the sample sintered at 1400° C were about 0.5 μ m in diameter which were comparable to starting AlN powders. The sample sintered at 1500° C had little change of microstructure. However in the sample sintered at 1600° C, AlN grains were wetted by a liquid phase and the size of grains slightly increased. Furthermore, outlines of several grains in this sample were indistinct, owing to dissolving in the liquid phase. AlN grains rapidly and drastically grew between 1600 and 1700° C. The size of grains of the sample sintered at 1800° C was about 5 μ m which was 10 times larger than that of the starting powder. This shows that this

sintering occurred with the liquid phase. The relation of density (Fig. 1) and microstructure changes (Fig. 3) suggested that the density began to increase at 1500° C, owing to formation of liquid phase.

The bright-field transmission electron micrograph (Fig. 4a) shows that the texture of AlN ceramics with SiO₂ and Y₂O₃ consists of spherical grains (5 to 10 μ m in diameter) and grain boundary. The selected-area electron diffraction from the grain boundary (Fig. 4e) can be indexed as [313] for Y₃Al₅O₁₂. As shown in Figs 4b, 4c and 4d, AlK α , SiK α and YL α lines were detected from the grain boundary. Therefore, the grain boundary had garnet structure and consisted of aluminium, yttrium, silicon and oxygen.

The cubic unit cell of garnet structure contains eight units of $A_3 B'_2 B''_3 O_{12}$, where A is dodecahedrally coordinated site, B' is a tetrahedrally coordinated site, B" is an octahedrally coordinated site and 0 is an oxygen ion [13]. In this grain boundary, the A site is

Figure 3 Scanning electron micrographs of the fracture surface of SiO₂ and Y₂O₃ added AlN ceramics sintered at various temperatures (a) 1800° C, (b) 1700° C, (c) 1600° C, (d) 1500° C, (e) 1400° C.

filled with Y^{3+} and then the B' and B" sites may be filled with Al^{3+} and Si^{3+} . Thus the grain boundary was considered to be the garnet type phase which was formed by the reaction of Y_2O_3 , Al_2O_3 and SiO_2 and/or Y_2O_3 and 27R polytype.

3.1.4. Thermal diffusivity

Figure 5 shows changes of thermal diffusivity with sintering temperature for AlN ceramics containing each additive. In the case of SiO_2 addition, the thermal diffusivity was very low and independent of sintering temperature as reported in the previous paper [11]. On the other hand, in the case of Y_2O_3 addition with and without SiO_2 , the thermal diffusivity increased with sintering temperature. Especially, from the combination of Figs 1 and 5, large increase of the thermal diffusivity occurred in the temperature range in which the increase of density was large. Thus, the densification leads to the increase of thermal diffusivity ity of AlN ceramics containing Y_2O_3 with and without SiO_2 .

The thermal diffusivity of both SiO_2 and Y_2O_3 added AlN ceramics, however, was much lower than that of Y_2O_3 added AlN ceramics at 1700 and 1800° C.

The addition of SiO₂ gave poor densification and the formation of 27R polytype to result in the decrease of thermal diffusivity of AlN ceramics [11]. When Y_2O_3 was added together with SiO₂, AlN ceramics were fully densified and the amount of 27R polytype decreased. Thus, the thermal diffusivity of both SiO₂

Figure 4 (a): Bright field micrograph of SiO_2 and Y_2O_3 added AlN ceramics, (b), (c) and (d): energy dispersive X-ray spectra and (e): electron diffraction pattern of grain boundary.

and Y_2O_3 added AlN ceramics was higher than that of SiO₂ added AlN ceramics. The reaction of Y_2O_3 and Al_2O_3 , i.e. oxygen trapping effect [10], was considered to be obstructed by the reaction of Y_2O_3 and SiO₂. Thus the oxygen diffused into AlN grains, so that the thermal diffusivity of this sample was much lower than that of only Y_2O_3 added AlN ceramics. Furthermore, not only oxygen but also SiO₂ and/or silicon were considered to diffuse into AlN grains, resulting in a decrease of thermal diffusivity. This, however, could not be detected within the limit of measurement by the analytical electron microscope.

3.2. Two-step addition of SiO_2 and Y_2O_3 3.2.1. Elimination of 27R polytype

Figure 6 shows X-ray powder diffractograms of sam-

Figure 5 The effect of sintering temperature on thermal diffusivity of AlN ceramics for various additives (\circ SiO₂ + Y₂O₃, \triangle Y₂O₃, \Box SiO₂).

Figure 6 The powder X-ray diffraction patterns of AlN powder pre-reacted with SiO₂ (starting powder) and Y_2O_3 added starting powder sintered at various temperatures (O AlN, \bullet 27R, ∇ Al₂O₃, \Box Y₄Al₂O₉, \blacksquare Y₃Al₅O₁₂).

ples for stepwise addition. Starting powder, obtained by the reaction of AlN and SiO₂, consisted of AlN and 27R polytype. The mixture of this powder and Y_2O_3 was sintered at 1400°C, and formed AlN, $Y_4Al_2O_9$, α -Al₂O₃ and 27R polytype. However, the amount of 27R polytype decreased with increasing sintering temperature. This suggests that 27R polytype reacted with Y_2O_3 and/or dissolved into liquid phase formed by Y_2O_3 -Al₂O₃, resulting in elimination of 27R polytype. Therefore, it is considered that the same reaction occurred in the case of coexistence of Y_2O_3 and SiO₂ as described above. However, it is not clear which Y_2O_3 , the liquid phase or both of them reacted with 27R polytype.

3.2.2. Densification and thermal diffusivity

Figure 7 shows the change of density against sintering temperatures for samples of stepwise addition. Specimens densified in the temperature range from 1600 to 1700° C and fully densified at 1800° C. From the microstructure observation, a liquid phase was formed in the temperature range from 1600 and 1700° C. Thus, a liquid-phase sintering occurred in these specimens, by addition of Y_2O_3 . In comparison with the experiment 2.1, the formation temperature of liquid phase of this specimen was nearly equal to that of Y_2O_3 added AIN ceramics, in spite of the coaddition of SiO₂ and Y_2O_3 .

Since SiO_2 reacted with AlN completely in the first step, there was no reaction of Y_2O_3 -Al₂O₃ and SiO₂ in the second step. Therefore, the decrease of formation temperature of liquid phase in the experiment I might be due to the reaction of Y_2O_3 -Al₂O₃ and SiO₂.

Fig. 7a shows the thermal diffusivity of these samples. The thermal diffusivity of these samples increased, though density of them did not increase in the temperature range from 1400 to 1600° C. From the

Figure 7 The effect of the sintering temperature on (a) the thermal diffusivity and (b) the density of AlN ceramics for two-step addition of SiO₂ and Y₂O₃. The dotted line indicates the theoretical density of AlN (3.26 g cm^{-3}).

results of powder X-ray analysis described in Section 3.2.1. (Fig. 6), 27R polytype decreased in this temperature range. Thus the increase of thermal diffusivity is considered to be due to the elimination of 27R polytype. In the temperature range from 1600 to 1800° C, the increase of thermal diffusivity was dominated by densification. However, it is not clear why the thermal diffusivity of the specimen sintered at 1800° C was lowered.

4. Conclusion

The addition of SiO_2 and Y_2O_3 to AlN ceramics resulted in the following

(1) specimens densified by liquid-phase sintering,

(2) the formation temperature of liquid phase was lower than the Y_2O_3 added AlN ceramics,

(3) SiO_2 and 27R polytype decreased, and silicon was contained in grain boundary and

(4) thermal diffusivity was higher than SiO_2 added AlN ceramics by the effect of (1) and (2).

Acknowledgement

We would like to thank Dr K. Anzai, Dr F. Ueno, Mr. M. Kasori, Mr A. Horiguchi and Ms Y. Sato (Toshiba Co R&D Center) for sample preparation and thermal diffusivity measurement

References

- 1. G. LONG and L. M. FOSTER, J. Amer. Ceram. Soc. 42 (1959) 53.
- 2. K. KOMEYA and H. INOUE, J. Mater. Sci. 4 (1969) 1045.
- 3. M. TRONTELJ and D. KOLAR, *ibid.* 8 (1973) 136.
- K. KOMEYA, H. INOUE and A. TSUGE, J. Amer. Ceram. Soc. 57 (1974) 411.
- 5. K. KOMEYA, H. INOUE and A. TSUGE, Yogyo-Kyokai-Shi 89 (1981) 330.
- G. A. SLACK, R. A. TANZILLI, R. O. POHL and J. W. VANDERSANDE, J. Phys. Chem. Solids 48 (1987) 641.
- 7. G. A. SLACK, J. Phys. Chem. Solids 34 (1973) 321.
- 8. T. SAKAI, M. KURIYAMA, T. INUKAI and T. KIZIMA, Yogyo-Kyokai-Shi 86 (1978) 174.
- N. KURAMOTO, H. TANIGUCHI, Y. NUMATA and I. ASO, *ibid.* 93 (1985) 517.
- K. SHINOZAKI, K. ANZAI, T. TAKANO, A. TSUGE and K. KOMEYA, in Proceedings of Annual Meeting of the Ceramic Society of Japan, Kyoto, January 1984, edited by N. Soga (Yogyo-kyokai, Tokyo, 1984) p. 43.
- T. YAGI, K. SHINOZAKI, N. ISHIZAWA, N. MIZUTANI, M. KATO and A. TSUGE, submitted for blication in J. Amer. Ceram. Soc. 71 (1988) C334.
- K. H. JACK, in "The Role of Additives in the Densification of Nitrogen Ceramics (Final Technical Report)" (European Research Office, London, 1978).
- 13. F. S. GALASSO, in "Structure and Properties of Inorganic Solids" (Pergamon, Oxford, 1970) p. 244.

Received 29 February and accepted 18 July 1988